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A Three-Dimensional Finite-Difference Time-Domain Formulation
For Nonlinear Materials with the Frequency-Dependent Electric Conductivity and Polarization

S. Joe Yakura and David Dietz
Air Force Research Laboratory, Directed Energy Directorate
Kirtland AFB, NM 87117-5776

Abstract

In this paper, we present a three-dimensional finite-difference time-domain (FDTD) algorithm that is used to
evaluate the propagation of electromagnetic waves in conductive and dispersive materials that exhibit the
frequency-dependent electric conductivity and polarization. We consider a case where the electric conductivity has
the linear property, specifically through the first-order (linear) electric conductivity function, and the electric
polarization has both linear and nonlinear properties, specifically through the first-order (linear) and third-order
(nonlinear) electric susceptibility functions. The resulting FDTD algorithm shows that the nonlinear dispersive
material with a third-order susceptibility function results in coupled nonlinear cubic equations for the three
components of the electric field vector, relating the next-time-step electric field vector to the previous-time-step
electric field vector. This contrasts the usual algorithm of the linear conductive and dispersive material, which has a
simple linear relationship between the next-time-step electric field and the previous-time-step electric field.
Consequently, the coupled nonlinear cubic equations must be solved at each time step to simulate the behavior of
the electric field vector in the nonlinear dispersive material that contains both frequency-dependent electric
conductivity and polarization.

I. INTRODUCTION

There has been considerable interest in understanding the transient behavior of an ultrafast laser pulse that
interacts with a nonlinear dispersive material. In the last several years many experimentalists have made use of
newly developed Kerr lens mode-locked titanium-sapphire lasers to perform well-controlled experiments to obtain
accurate measurements of the transient behavior of ,ultrafast laser pulses in simple molecular liquids and solids
which are known to exhibit nonlinear optical behavior [1]. To better understand the details of nonlinear processes
that are observed in the experiments, numerical simulations have been used extensively to reproduce observed
nonlinear effects. Until recently most computer simulation has been performed by solving an approximation to
Maxwell’s equations, known as the generalized nonlinear Schrodinger (GNLS) equation [2], to get information
about the time evolution of the envelope of the propagating oscillating wave packet so that one can obtain the
overall shape of the propagating optical pulse. Because a GNLS equation-based computer simulation does not
provide any information about the details of the oscillating waves inside the envelope of the optical pulse, there is a
renewed interest in solving Maxwell’s equations directly without having to rely on any approximations.

With the advent of present day computers which provide very fast execution times and great quantities of
computer memory, we are at the point where we have enough computational power to solve Maxwell’s equations
directly for nonlinear dispersive materials. Among recently investigated numerical techniques that show great
promise in achieving this goal is the well-known finite-difference time-domain (FDTD) method [3]. It is based on
using a simple differencing scheme in both time and space to calculate the transient behavior of electromagnetic
field quantities. Because of the simplicity of the FDTD method, recent researchers have focused their attention on
the numerical evaluation of the linear and nonlinear convolution integral terms which appear in one of Maxwell’s
equations (Ampere's Law). By properly evaluating these terms, many people have successfully modeled the
response of linear and nonlinear dispersive effects [4-10].

In this paper we consider the isotropic materials that exhibit both linear and nonlinear polarization properties,
specifically through the first-order (linear) and third-order (nonlinear) electric susceptibility functions, X,,”)(t-'t) and
X,,”’(t, T1.,t2), respectively. For such materials the relationship between D(;x) and E(t;x) can be expressed as [11]

Ditx) =, E(tx)+e, J.E(z';g)X;,“(t—%)dT
P —oo

re, Y _[ _[ jE(tz;5)[E(t,;_)g)OE('Z';E)]X;,”(t,T,t,,tz)dtz &, dr, (1.1)
P
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where €, is the electric permittivity of free space, €.. is the medium permittivity at infinite frequency, and Xp”)(t-r)
is the pth term of the collection consisting of p,,,, time dependent, first-order electric susceptibility functions, where
Prmac 18 the maximum number of terms which we choose to consider for a particular formulation of Eq. (1.1),
Xp(”( 1,31,,13) is the pth term of the four-time dependent third-order susceptibility function which contributes to the
nonlinear behavior of the material and e is the notation used for the dot product of vectors. When Xpm(l, Tt,1,) is

reduced to the single-time dependent susceptibility function, ,{p(”(t,-tg), by making use of the following Born-
Oppenheimer approximation [11]:

XNttty )=8(1~1,)8(t -1, W2ty =1, )+ (1, ~1) o], (1.2)

where a{)f,’ is a constant and &) is the Dirac delta function, we can show that Eq. (1.1) reduces to an expression that

consists of sums of convolution integrals of linear and nonlinear terms; namely,

Dit;x) =e,e. Etix)+e, Y, JE(T;,_\:)X/(J”(t—T)dT
P —wo

te, Bt Enx)sEnx)]y aly) +e, E:x)Y j [E(z;x)o E(r:x)] 40 (1—7)dr. (13)
p P —w :

We also consider in this paper the case where the current vector, J(t;x), which appears in Ampere’s Law, is
represented by two contributions: the first term is directly proportional to the electric field vector, E(t.x), with the
constant conductivity coefficient, ”, and the second term is expressed in the linear convolution integral of E(t;x)

and the first-order time dependent conductivity function, o'”(z). Hence, we express the current vector in the form as
shown below.

J(t:x) = oV E(t; x)+ J'g(r,-yo(”(t-r)dr. (1.4)
Based on the above expressions, we provide a general FDTD formulation for evaluating the linear and nonlinear
convolution integrals that appear in Ampgre's Law. We investigate, in particular, the case in which the first-order
electric susceptibility function, the third-order electric susceptibility function, and the first-order time dependent

conductivity function are all expressed in the following complex exponential forms that contain complex constant
coefficients:

X t)=Re{ahesp(—y5t)]UG), (1.5)
X5 (1)=Re{ altexp(—yN1)} U(1), and | (1.6)
o'(t)=Ref Blexp(—61)}U1). . (1.7)

where Ref } is used 1o represent the real part of a complex function, U(?) is the unit step function, and apL , apNL ,
B, % %'~ and 6" are complex constant coefficients; superscripts L and NL are used to distinguish between linear
and nonlinear coefficients. By making the proper choices of complex constant coefficients and performing Fourier
transforms, we can readily obtain the familiar Debye and Lorentz forms of the complex conductivity and
permittivity in the frequency domain.

II. FDTD FORMULATION

In light of Egs. (1.3) and (1.4), we write Maxwell’s equations inside the dispersive material as
ofp H(t;x)]

=-VxEtx), 2.1
ot .
a%tt;{_) =VxH(t;x) -6 E(t;x)-1"(1;x), 2.2)
with
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D(t;x)=e,e., E(t;x)+€, ZB,L,(t:z)

+e, E(t; x)ZP NL(t:x)+e, E(t;x) E(t;x)e E(t; x)]zag,p , (2.3)
Phtix) = [Ema) xiPi-n)ds, @4)
PyM(1:x) = T[ E(z;x)eE(z:x)] 2 (1-1)dr, (2.5)
JHtx) = Tg(r;yof“(t—r)dr, (2.6)

where H(t;x) is the magnetic field vector, & is the magnetic permeability, B,,L(t,‘)_c) and [E(t;g)P,,NL(t;g) ] are related to
the pth terms of linear and nonlinear polarization field vectors, respectively, and J Lit:x) is the first-order time
dependent conductivity. Usmg an FDTD algorithm, the above equations can be solved numerically at each time step
provided we can handle J Li:x), P, L(t:x) and P Yt:x) numencally Therefore, the whole solution rests on the
question of how to carry out the numencal evaluatlon of JX (t;x), P,, (t;x) and P L(t:x) at each successive time step
For that reason, the rest of this section is devoted to the discussion of numerlcal formulation that treats J X(z;x),
Ep (t;x) and Pp (t,g).

To obtain second-order accuracy in time in evaluating the convolution integrals, E(z;x) is approximated by a
piecewise continuous function over the entire temporal integration range so that E(¢;x) changes linearly with respect
to time over a given discrete time interval [mAt, (m+1)At], where m=0,1,...,n, with n4t being the current time step
[12,13]. Thus, the mathematical expression for E(f;x) takes the following form which can be expressed in terms of
the electric field values, E;™ and _E_ijk’"” , Tespectively, evaluated at discrete time steps t=mAt and t=(m+1)At where
these two successive times are obtained at the same,discrete spatial location x=(idx,jdy,kAz) with Ax, Ay and Az
being the spatial grid sizes in the x, y and z directions, respectively (we use a superscript to designate the discrete

time step and a subscript for the discrete spatial location):

m+!

(_.ijk T =ik )

E(1:% ) eeting javiae) = L Ey + (t—mAt) ] for 0<mAt<t<(m+1)At<(n+1)At;and

E( t"-{){:(iAX,jA_\’,kAZ) = 0 fOl' t S 0 . (2.7)

For three-dimensional FDTD calculations in Cartesian coordinates, we need to solve the following discrete forms
of Maxwell’s equations which are obtained from Egs. (2.1) and (2.2) by finite differencing in both time and space
using the usual Yee algorithm [3]'

n n—¥ n At

HOHE? ) — p( HE?), -{ [(Ejyin), ij(k—’/z))y]__[( vk e = EiGi_ype ) 1. 28
HOHE® )~ H" ), ‘{ [ (Efumin )= (B ), ] - [ (Eprny e~ Epusy i 11 (2.9)
HOHE" ), - HE” ), ={ —[ ( Efosp )= Efy s )x ]———[ (Eft i e —(Epe W 11 (2.10)

(Dj ), ~(Djy ) { [ (H o e =(H G ): = [ (Hyiltm ) ~(H il ), 1]

(n+1)At (n+1)At
"0'(0){ J- (E(8; X )xefinn, jav sz ) Jx A }‘l/ I(JL(t;E)gqim,jA)-.M) )xdt}’ (211
nat naAt




At 12 12 At lz Iz
(D! )y ~(Djy ), ={Z[(H§(7<i'/z) Je ~(Hiily ), ]_Z[(H("i:’/é)jk ). =(H{ ), 1}

(n+l)At ( n+1)At
"O'(O)II j (E(8 X ) empitn jay haz ) )y At }‘II J‘(JL(t;_)f)g:(iAx,jA_\xkAz) )_‘,dt}, (2.12)
nAt nAt

n At ] n+%2 At V2] 2
(D" )e=(D ). = { == [ (H{y )y ~(H{y50), J =5 [0 =R ), 1)

(n+l)a (n+l)A
-9 j (E(8X)setian javiac) ). @t J—{ J(JL(UE){:(iAx,jA_\‘.kAz) ).t }. (2.13)~
nat nar

To evaluate the right-hand side of Egs. (2.11-2.13), we first begin by substituting Eq. (1.5) into Eq. (2.4) and
Eq. (1.6) into Eq. (2.5) and then differentiating these integrals with respect to time to obtain the following first-order
differential equations for complex functions QpL( t;x) and Q,,NL( tx):

90 (1:x)
—L— 47,0 (:x)=ab Bt x), (2.14)

30, (t;x)
ot

From these equations, the linear and nonlinear polarization vectors, Bp"(t;g_) and [E_(t;)_c)PpNL(t;J_c)], can be obtained

simply by taking the real parts of Q,,L(t;z_c) and [E(t;)_c)QpN"(t;g)], respectively. Now, solving these two equations

exactly by using integrating factors exp( ;;,L t) and exp( };,NL t), respectively, and then performing the time integration
from ndr to (n+1)At, we have

+75 0, (5:x)=al [ B(t;x)e E(t:x)]. 2.15)

nAr+ At

_Q_:(nAt+At;§) =exp( — yf,m)gf,(nm;gnaf, exp(—ypAt) _[gr,-z) exp[ -y (ndt—7)]dr, (2.16)
! nar
and
Oy (ndt+ At;x) = exp(- yN* At JON (nat; x)
nAt+A4r
taptep(~yyt ) [[E(:x)e Bt 0)lepl -y (ndi—2 )]dr . 2.17)

nat
Based on the piecewise linear approximation which we have considered for the temporal behavior of E(t;x), we can
substitute Eq. (2.7) into the right-hand side (i.e., the inhomogeneous part) of Eqs. (2.16) and (2.17) for E(z:x).
Evaluating at spatial location x=(iAx,jAy,kAz), these equations result in the following recursive relationships for
(Qp )™ and (@)™ in terms of (Q, )" , (O "), Ey” and Ey™':

Q, (nd-+ atidx, Ay, kde ) =(Q0 )it =exp(~y- 40 )(QL i + Bl (v o)+ (ELY ~ ED, Nwg,),  (@18)
and
Q)" (ndt+ Aidx, jdy, ke )=( Q) )it =exp(~y™ 20 ) QN )y + [(EL, CELy5)
+2[Eye (B ~E5 I whh)
+[(Eg! ~Eg )o(Egt' —Ep 1w ). (2.19)
where
(n+l)Ar A al’
(vso)=ak jexp[—y’/;(nAHAt—r)]dr:a,L, Jexp(—yf,r)dr=——f[1—exp(—yf,m)], (2.20)
nat 0 }’p
aL At aL ]
(W;L;_I)EEF,I(Af—f)exp(—y,ﬁf)df=‘y—f{I"Tm[]“exp(ﬁf,ﬂt)]} , (2.21)
0 yo] }’p




(Vo Iexp{—yNLT)dr——yl—:-[] exp(—y,- 4t )], (2.22)
| (Whh)= TA: 7 Jexp( ~y " T)dr——Af-{I ——[1—exp(—yY 41)]}, (2.23)
2 Yoo v
| ' (s —y”’“‘r)dr— {1— [1——1 [1—-exp( N 4e)]1}. (2.24)

},NL At },gL At
When Eqs. (2.18) and (2.19) are used in Eq. (2.3) to obtain discrete forms of Eq. (2.3) at two successive times

t=nAt and t=(n+1)At and at specific spatial location x=(iAx,jAy,kAz), we can express D" and D™, respectively,
in the following forms:

.qu €€ -_qk+eo ZRe{(Q )uk }+eo _quRe{(QNL)l]k }+eo _qk[Eqk =ijk ]2‘20/;' ’ (225)
and
Dy’ =e .. Ej'+e, ZRe{[exp(—rﬁm)[(gf,);kJ+£,3'-k(w,%,o)+(.b132’—£3k Xvpn))

+e, zRe{ E:;”exp(—r,, a0 )( QN ) +EN [(ES, s En J(whs )

+2E5 [Ef o(Ef —E whs )+ Eq [(Efy' —Ef Je(Ely —En whs))

+e, B [EG" EZZ’JZaB (2.26)

Subtracting Eq. (2.25) from Eq. (2.26), we obtain the following expression for the left-hand side of Egs. (2.11-2.13)
in terms of (.QpL)ijk" » { QpNL)ijk" , Ej" and _Eijkn+li
1 !
QZ; _DZk =€,€. (EZZ _E_Z‘k)

+e, Zke{ [exp(~yp2e )= 1H(2, Fy 1+ Ep(Who )+(Efy ~Epy Xwh )}

=ijk

+e(,ZRe/[ Ejlexp(—yhtar) - E5 I QN fo + El’ [( Ey 0 En )N W5 )

=ik

+2EZ7?'[Euk (Ej' —Ej lwpi )+ Ei [ B’ ~ Ejy )o(Ey" ~ Eg )lwps))

1 n+l n
+e, [EG (E «Ef' )1-Ej [(Ej «Ej Iy o). @27

To evaluate the second term of the right-hand side of Egs.(2.11-2.13), we substitute Eq.(2.7) for

E(t;x)x=(iax jav.kaz) and obtain the following expression:
(n+l)Ar
o I E(1; X )eet it jay ) 4t = 0"° (E;‘,j’ +EY ). (2.28)
nat

To evaluate the third term of the right-hand side of Egs. (2.11-2.13), we first substitute Eq. (1.7) into Eq. (2.6)
and then differentiate the integral with respect to time to obtain the following first-order differential equation for
complex function J(1;x):

of“(1;x)

“ dt

As in the case of linear and nonlinear polarization vectors, the current vector, J “(#;x), can be obtained simply by
taking the real part of J“(#;x) in the above equation. Once again, we solve the above differential equation exactly by

using integrating factor exp(6" t) and then performing the time integration from ndt to t to get the following
expression for complex function J*(£;x):

+0 I (1 x)= BLE(1;x). (2.29)




1
it x)=exp [0 (nat—1)] ¥ (ndt; x )+ Blexp(-6t) J.exp(OLT)E(T;_)g) dr (2.30)
nat
Again, we substitute Eq. (2.7) into the above equation for E(7:x) based on the piecewise linear approximation. Then

we integrate Eq. (2.30) from nAt to nAt+At, evaluated at spatial location x=(iAx,jAy,kAz), to obtain the following
expression for the third term of the right-hand side of Eqs. (2.11-2.13):

(n+l)at (n+1)A
L L,
I8 X ) et i jav kaz )8 = Rell J! (1 X )yetian, jay kaz ) dt}
ndt nar

(n+l)Ar
= Ref exp( 8 nde )JE(nat;idx, jAy, kA7) _[ exp(—OL 1 )dr

nat

(n+l)At
+BY [ [ewlOM(T=1)] B ) piag sy d )
nAt  nat
{(n+l)Ar
=Ref exp(0 nat )y J* Di jexp(—GLt)dt
‘ nat
(n+l)Ar ¢ n+i n
+ Bt j J' exp[0%(7—1)][ Ely +(——E—€£I(Atﬂ(r—nAt)] drdt}
ndt  ndt

=Ref 5’-;[ I—exp(—0"At)J( 4" )j + Ep (£5)+(EN —En N(E5)), 23D

where
(n+1)Ar ¢ ﬂLAt ]
(Eh)=pt _[ J'exp[eL(r—:)]drdt= L‘[/— —[1—exp(-6"4t )]}, (2.32)
ot 6 " A
L (n+1)ar o L
(gh=L | _[(r-nAt)exp[eL(r—z)]drdz:'B Ay T fi—ep(-eta)]). @33
4 ot "2 6'a (glp)

The (lL),-jk" expression, which appears in Eq. (2.31), can be obtained in the recursive form when we solve Eq. (2.29)
exactly for J L(t;)_c) using integrating factor exp( ot t) and then performing the time integration from r=(n-1)4t to
t=nAt while making use of the piecewise linear approximation for E(z;x) to evaluate the integral, which arises from
the right-hand side of Eq. (2.29). The result is that we obtain the following recursive relationship for (lL),-jk" which is
expressed in terms of the previous time step values of (l"),jk"" R E,-jk"" and Ej:

(L fe=exp (~0" 48 )L 37+ Bl (CE )+ (En~El J(CE)), @2.34)
where
nAt At L
(¢ky=pt jexp[—BL(nAt*f)]dr=ﬁL.[exp(—HLT)d1'=—L[]-—exp(—9LAZ)], (2.35)
(n-1)4t 0 6 .
(¢t E’B—LT(AI—T)exp(—BLT)d‘r:-—'B-i{]— ! [1—exp(—6"at)])} (2.36)
ad oL ola ' "

Finally, when Egs. (2.27), (2.28) and (2.31) are substituted into Eqgs. (2.11-2.13), we obtain the following three
coupled nonlinear cubic equations which we need to solve for Ei" Tie., (Ey™),, (Ey™'), and (Eg™'), ] in terms
of known quantities ( Qp’“),»jk", ( QPNL),;,,(” , (lL),:,-k" , Eji" and Hy™” which are calculated at previous time steps t=nAt
and t=(n+X%)At:

n+l +7 n+l n+l n+l
ap+a, (Eg ), +(EY )x{aZX(Eijk Jetay (Eg’ )y +ay, (ER), l’

+as(Eg ) f ICER ), 1P+ [(EL ), )+ IEL" ), 17 }=0, 2.37)




n+1 :+1 n+i n+l
ag +a,(Ef ) +(ER" ) f ay (ER ) +ay (ER' ) +ay (Ef ), }

+ay(ER ) (ER ) P +IER ) 1P +UER), 1 }=0,

ag, +a,(Ef" ), +(Ef ) ay (B ) +ay (ER ) +ay,(ERT ), |

+ay(Ep’ ) CER ) 1P +IER ), 1P +[(ER' ), )7 }=0,
where ag,,,ao‘,ao,,a,,aznaz\,azZ and a; are given by

ane={ S [ ) ~CHE ),.]—5‘1[ (Hifh = (Hi e I+ S B,
+Re{—[1 exp(—8 At)J[(J* ) 1. J+(E] ), Re{(E5)-(E7)] -
- €. (El )+e, ZRe{ [exp(—yEAt)—1JI(Q5 Jy 1, J+e, (E ,,k)AZRe{(w,ﬁo)-(w,ﬁ_,)}
e, (E} )XZRe/(Q”L),,k}—e(,(E&)x[[( El ) P +[(Ep ), 12+[(E,k)21 ]Z oby)
a0y = S [ )~ ) ] [ CHE =B ) T+ 01 S (B ),
+Re{~—[1 exp(—0 A)JI(J* i 1, J+(Ejy ), Re{(£5)~(£])}
— e (El\+e, ZRe{[exp( yEAt)=1][( Q5 B ], Jre, (ER ), ZRe{(w,ﬁo)—(vf’,;,)}
~€, ,,k)ZRe{(Q”L),,k} €0 (Ep O ICER ) PP+ I(E} ) P +1( ,,k)Jz]Za/o
.= < L CH ) ~CHE 0 ] - AL, ~CH ), T 2L
+Re{—[1 exp(—0"At) () 1, J+(Ejy ), Re{(E5)—( &)}
€,€u (EL )+e, ZRe{lexp(—r,,Ar)—u[(Q,,),;fk I, J+e, (ER), ZRe{(w,éo)-(w,é,)/
&, ( ,,k)ZRe{(Q”‘),,k} o (Ep L I(E} ) P +I(E}y ), I’ +I(E, ,,k)z] ]Z oy »
a, =€, +0'"— > +Re{(§,)}+e,, zRe{(wp,)}+e,,ZRe{eXP( VgLAt)(QNL),,k}
+e, [[(E} ) J? +I(El ), ]? +[(E,,k)1 ]2Re{(w,,o) 20w )yt )},
aszZe,,(Esk)ERe{(w,,,) (vh5)}.
a, =2e, (E‘)}:Re{(w,’,’,%) (wh5)}.
ay,=2¢€,( ,,A)ZRe{(wp,) ~(whs)},

a; =, Zke{(w )}+Z o).

(2.38)

(2.39)

(2.40)

(2.41)

(2.42)

(2.43)

(2.44)

(2.45)

(2.42)

(2.43)

Egs. (2.37), (2.38) and (2.39) can be solved, respectively, for (E;™'), , (Eu™'), and (Ej™'). by using any standard
root-finding numerical technique for a set of nonlinear equations {14]. One technique that is suitable for our problem




is the iterative nonlinear Newton-Raphson method using (Eii” ) » (Eyi" )y and (Ej" ), as the initial guess for the start
of the iterative procedure.

In the above formulation, we only need to consider updating Egs. (2.8-2.11), (2.18), (2.19), (2.34) and
(2.37-2.39), respectively, for H;;"** , ( O™ ( 0, )™, (1")y" and E;"™” at each time step in order to carry out
a complete three-dimensional computer simulation of the electric field response in nonlinear dispersive materials
that contain both frequency-dependent electric conductivity and polarization terms.

For the purely linear dispersive case, a,,, @z, a3, and a; , as well as some terms appearing in ag, , agy, ap;and a;
turn out to be zero. In this case we can solve for _,-jk"” directly without having to rely on the numerical root finding
technique as discussed in greater detail in the published literature [15-20].

III. CONCLUSIONS

Based on the FDTD approach we presented here, we can solve Maxwell’s equations directly for the propagation
of electromagnetic waves in linear and nonlinear dispersive media that exhibit the frequency-dependent electric
conductivity and polarization. Because of the piecewise linear approximation we used for the time dependent part of
the electric field vector, our approach provides second order accuracy in time. In addition, our approach retains all
the advantages of the usual first-order discrete recursive convolution approach, such as fast computational speed and
efficient use of the computer memory.

We have shown that it is critical to express the first-order (linear) conductivity, the first-order (linear)
susceptibility, and the third-order (nonlinear) susceptibility functions in the exponential forms in the time domain in
order to obtain the recursive feature in our FDTD algorithm. The most important result we have shown in this paper
is that FDTD formulation for nonlinear dispersive materials results in having to solve three coupled nonlinear cubic
equations for the three components of the electric field vector at each time step as compared to just solving the linear
equations in the case of linear dispersive materials.
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